Perfectly matched layers for coupled nonlinear Schrödinger equations with mixed derivatives
نویسنده
چکیده
This paper constructs perfectly matched layers (PML) for a system of 2D Coupled Nonlinear Schrödinger equations with mixed derivatives which arises in the modeling of gap solitons in nonlinear periodic structures with a non-separable linear part. The PML construction is performed in Laplace Fourier space via a modal analysis and can be viewed as a complex change of variables. The mixed derivatives cause the presence of waves with opposite phase and group velocities, which has previously been shown to cause instability of layer equations in certain types of hyperbolic problems. Nevertheless, here the PML is stable if the absorption function σ lies below a specified threshold. The PML construction and analysis are carried out for the linear part of the system. Numerical tests are then performed in both the linear and nonlinear regimes checking convergence of the error with respect to the layer width and showing that the PML performs well even in many nonlinear simulations.
منابع مشابه
Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations
Extending the general approach for first-order hyperbolic systems developed in [D. Appelö, T. Hagstrom, G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability, SIAM J. Appl. Math., 2006, to appear], we construct PML equations for the mixed-type system governing propagation of optical wave packets in both 1D and 2D Bragg resonant photonic wa...
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
Iterative scheme to a coupled system of highly nonlinear fractional order differential equations
In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...
متن کاملPerfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations
Discrete transparent boundary conditions (DTBC) and the Perfectly Matched Layers (PML) method for the realization of open boundary conditions in quantum device simulations are compared, based on the stationary and time-dependent Schrödinger equation. The comparison includes scattering state, wave packet, and transient scattering state simulations in one and two space dimensions. The Schrödinger...
متن کاملPerfectly matched layers for the stationary Schrödinger equation in a periodic structure
We construct a perfectly matched absorbing layer for stationary Schrödinger equation with analytic slowly decaying potential in a periodic structure. We prove the unique solvability of the problem with perfectly matched layer of finite length and show that solution to this problem approximates a solution to the original problem with an error that exponentially tends to zero as the length of per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009